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I. Summary

The goal of the work reported herein is to develop and validate computational tools

to be used for the design of planar and non-planar wing geometries for minimum induced

drag. Because of the iterative nature of the design problem, it is important that, in addition

to being sufficiently accurate for the problem at hand, these tools need to be reasonably fast

and computationally efficient. Toward this end, a method of predicting induced drag in the

presence of a free wake has been coupled with a panel method. The induced drag

prediction technique is based on the application of the Kutta-Joukowski law at the trailing

edge. Until now, the use of this method has not been fully explored and pressure

integration and Trefftz-plane calculations favored. As is shown in this report, however, the

Kutta-Joukowski method is able to give better results for a given amount of effort than the

more commonly used techniques, particularly when relaxed wakes and non-planar wing

geometries are considered. Using these methods, it is demonstrated that a reduction in

induced drag can be achieved through non-planar wing geometries. It remains to determine

what overall drag reductions are possible when the induced drag reduction is traded-off

against increased wetted area. With the design methodology that is described herein, such

trade studies can be performed in which the non-linear effects of the free wake are taken

into account.



II. Introduction

As the practical application of laminar flow control to commercial transport aircraft

comes closer and closer to realization, in order to gain the full benefit of this technology,

it is important in the wing design process that it be balanced with induced and wave drag

considerations such that the overall wing drag is minimized. Toward this end, the research

effort reported herein has been directed to the prediction and minimization of induced drag.

Recently reported findings have indicated that induced drag may be reduced by utilizing

unconventionally shaped and/or non-planar wing planforms _-3. To validate these findings,

it is necessary to be able to predict the induced drag with reliability and precision.

Furthermore, if the same method is to be used for design purposes then, because of the

iterative nature of the design process, it is also necessary that the method be

computationally efficient. Thus, an analysis method has been developed which has the

accuracy of a higher-order panel method using a large panel density, while requiring only

a small percentage of the computational time. The technique is capable of accounting for

the effects of a free wake in the prediction of the induced drag for both planar and non-

planar wings.

Because the difficulties which accompany theoretical induced drag predictions are

also present experimentally, validation of induced drag prediction methods is extremely

difficult. Unfortunately, because of this, such validation must largely be based on

comparison with predictions of other theoretical methods. For this purpose, the methods

used for such comparisons are in widespread use and well calibrated.

At this point, the newly developed method for predicting induced drag has been
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validated by comparing its predictions with thoseof other commonly usedanalysisschemes.

It hasalsobeenusedto match the experimental resultsof a recentwind-tunnel testdirected

at exploring the influence of planform geometry on induced drag. In both exercises,the new

method performed very well.

III. Background Discussion

To calculate the induced drag generated by a lifting surface it is required that all, or

at least part, of the velocity field be determined in the vicinity of the wing. Potential flow

methods generally solve for the velocity over only a small part of the flow field and thereby

save a tremendous amount of computation time. The induced drag is calculated in these

methods by either applying the Kutta-Joukowski law to the bound vorticity, or by integrating

the streamwise components of pressure on the surface of the wing. For this reason,

potential flow methods require solution of the velocity field only at points on the lifting

surface as opposed to points over the entire flow field. The potential flow methods which

employ the Kutta-Joukowski law determine the downwash velocity at the wing either by

direct calculation, or by analyzing the flow in the far-wake where the flow is assumed to be

two-dimensional (i.e., in the Trefftz plane) and relating that solution to the flow at the wing.

The latter technique assumes the wake of the wing to be rigid and aligned with the free-

stream velocity.

A more computationally intensive approach for calculating the induced drag is to

solve the Euler or Navier-Stokes equations over the entire flow field. The induced drag is

then determined by integrating the resulting distributed pressure force on the wing surface,



or directly from the calculated vorticity shed into the wake. The amount of computer time

required to solve the governing equations makes this approach impractical as a tool for

preliminary design, although it has the potential for being extremely valuable for the

accurate analysis of a given geometry.

The following is a brief explanation of available methods for calculating induced drag

and a discussion of the strengths and weaknesses of a number of potential flow methods, as

well as methods which make use of the Euler or Navier-Stokes equations.

Li_ng-Line Theory (Prandtl-Lanchester)

The lifting-line theory of Prandtl analyzes the flow field as a potential field with the

wing modeled as a line vortex of varying strength located at the wing quarter-chord 4.

Helmholtz' s theorem requires that any spanwise change in vorticity of the lifting line be

shed into a sheet of distributed trailing vorticity. The trailing vorticity is assumed to be

aligned with the free-stream velocity and to extend downstream to infinity. The strength of

the trailing vortex sheet at any spanwise location is equal to the spanwise change in vortex

strength at the corresponding point on the lifting line. In this model, the sheet of trailing

vorticity is assumed to be rigid and does not deform under its own induced velocity. The

velocity that the trailing vortex sheet induces on the lifting line is used to calculate the

induced drag of the wing.

Munk made use of the lifting-line theory to calculate the optimum spanwise lift

distribution for minimum induced drag within the context of the given assumptions s. In this

case, the minimum induced drag is achieved when the induced velocity normal to the lifting
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line is proportional to the cosine of the local dihedral angle. For a straight lifting line

(dihedral angle equal to zero everywherealong the span) the classicalresult of a constant

downwashover the span,asgeneratedby an elliptical lift distribution, is obtained. For a

curved lifting line, which models a non-planar wing with spanwisevarying dihedral angle,

the optimum lift distribution for minimum induced drag is well defined, again, within the

limits of the given assumptions6. Several questions arise, however, regarding the

assumptionsusedin obtaining these results. In particular, the lifting-line model ignores the

effect of the chordwise distribution of vorticity on the downwashdistribution since all the

vorticity generatedat a given spanwiselocation hasbeen collapsedto a single point. Also,

the effect that the deforming wake has on wing performance is not taken into account.

While lifting-line theory is useful for approximating the performance of unswept, high-

aspect-ratio wings once the chord distribution is fixed, the method is unable to account for

any aerodynamic differences between wings due to different planform shapes.

Modified Lifting-Line Theory (Eppler)

A recent modification to lifting-line theory locates the non-planar lifting line along

the trailing edge of the plan.form instead of along the quarter-chord line 7. As in the Prandtl

lifting-line model, the effects of chordwise loading are not included; however, the influence

of the trailing-edge shape is now considered. It is assumed in this method that the bound

vorticity does not influence the induced velocity at the lifting line and is therefore not

considered in any downwash calculations. Induced drag is calculated in this method by

applying the Kutta-Joukowski law to the bound vorticity at the trailing edge. The method
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can be implemented with either fixed- or free-wake analyses, and can consider planar and

non-planar wing planforms. In the standard lifting-line model, the lifting line is placed at

the quarter-chord to be in agreement with the two-dimensional lumped-vortex element

approach in which this positioning properly matches pitching moment results and effectively

satisfies the Kutta condition. For the computation of induced drag, however, calculating the

downwash at this point is not consistent with the physics of the problem. As the wing must

pass before any actual downwash can occur, the tailing edge placement of the lifting line

used in the modified theory provides a better model for induced drag calculations than that

of the classical approach. In this way, although much of the simplicity of the Prandtl model

is retained, the modified lifting-line method can account for some planform effects through

the shape of the trailing edge.

Vortex-Lattice Methods

Vortex-lattice methods 8 make use of an array of horseshoe vortices with spanwise

segments bound to the wing and streamwise segments trailing downstream from the trailing

edge parallel to the free-stream velocity. The strength of each vortex is determined by

satisfying the condition that the flow be tangent to the mean camber line of the wing at a

number of control points equal to the number of vortices used. This constraint defines a

system of simultaneous linear equations which are solved for the vortex strengths. The

strengths of the streamwise trailing vortex filaments are taken as the sum of the strengths

of the horseshoe vortices distributed over the chord at a given spanwise position.

Modeling the wing using the vortex-lattice approach attempts to capture the effect



of the chord-wise loading on the overall wing aerodynamics, although thickness effects are

ignored. Typically the wing wake is modeled using straight, non-deforming vortex filaments

aligned with the free stream; however, the effect of the deforming wake can be included in

this method using wake relaxation 9.

Induced drag is normally calculated in the vortex-lattice method by applying the

Kutta-Joukowski law on the spanwise bound vortex segments which are in the influence of

the local downwash. Consequently, the orientation of the bound vortices is important and

some research has been done regarding the way in which the lattice is constructed 1°-13. One

question which arises is whether or not the spanwise vortex segments should be aligned

perpendicular to the free-stream velocity, aligned with the sweep angle of the wing, or

aligned in some other direction depending on the wing planform shape. Unfortunately, it

is found that the choice of lattice shape can have a significant effect on the solutions and

the answer to the above question actually depends on what information is being sought.

Linear Panel Methods

Panel methods discretize the wing upper and lower surfaces into source, doublet, or

vortex panels which induce a perturbation on the uniform (free-stream) velocity field 14.

Unlike vortex-lattice methods, such methods consider the effects of wing thickness. Low-

order panel methods assume the panels to be flat with constant singularity strength over the

entire panel _s, while higher-order methods consider surface curvature and allow for a

distribution of source, doublet, or vortex strength over the panel. The strength of the

singularity on each panel is determined by satisfying the flow tangency condition at a
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number of control points that is equal to the number of panels used. As in the vortex-lattice

method, the application of the appropriate boundary conditions produces a system of linear

simultaneous equations that are solved for the panel strengths. The shape of the freely

deforming wake can also be computed by discretizing the wake into panels and calculating

the flow velocity at each panel. The wake is then reoriented so that each panel is aligned

with the local velocity vector. Since the singularity strength and orientation of the panels

in the wake effect those on the wing, this process must be iterated until it converges and a

steady-state wake shape is obtained.

For panel methods, induced drag can be calculated by taking the streamwise

component of the product of surface pressure and panel area summed over all the wing

panels. This method is extremely sensitive to errors in the calculated pressure distribution

which are most pronounced near the leading edges and wing tips, even in higher-order

methods 3. Another means of calculating induced drag is to either assume a rigid wake, or

attempt to compute the deformed wake shape, and numerically integrate the so-called

"Trefftz-plane" integral over the velocity field far downstream where the flow is assumed

to be two-dimensional. In the relaxed-wake case, this approach is not practical because in

order to resolve the velocities well enough, the singular vortex filaments are approached so

closely that the validity of the induced drag calculation becomes questionable.

Full-Potential, Euler and Navier-Stokes Methods

Linearized potential flow methods do not include the effects of compressibility and

are therefore inadequate for the transonic wing design problem. To take these effects into



account, solution of the full potential, Euler, or Navier-Stokes equations is required. The

solution must be computed over a large enough region of the flow so that the significant

upstream and downstream effects on the wing performance are captured. As in the

linearized case, the full-potential equation requires that the wake geometry be specified, or

fitted, as a boundary condition before solution takes place 16. In the case of the Euler or

Navier-Stokes equations, the freely deforming wake shape is captured in the solution. Once

the velocity distribution on the wing is determined, the lift and induced drag can be found

from a surface pressure integration similar to that used in panel methods. Determining lift

and drag from a far-field wake-integration scheme has also been attempted with some

success 17.

In order to numerically solve the Euler equations for a simple wing geometry over

the number of grid points needed for reasonable accuracy, several hours of computation

time on a CRAY Y-MP are required 17. Solution of the full-potential equation would

require a similar effor¢ 8. While not unreasonable for analysis purposes, this amount of

computational time is generally considered excessive for use in an iterative design process.

To include both the effects of viscosity and compressibility in the wing design

problem, either a boundary-layer solution would have to be interacted with the full potential

or Euler solution, or the full Navier-Stokes equations would have to be used. As this would

require an amount of computation time even greater than that required for the Euler

equations, this approach is also considered to be impractical for routine design activities.
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A Note on Calculating the Deformed Wake Shape

Due to the mathematical instability inherent in the self-induced motion of a vortex

sheet, an accurate determination of the shape of a freely deforming wake in any potential

flow technique is an extremely difficult problem. Spacial relaxation methods calculate the

local velocity at points in the wake, align the trailing vortex filaments with the local velocity

(streamlines), and then iterates until convergence to a steady state wake shape is achieved 9.

Alternatively, a time-stepping method used in conjunction with some vortex-lattice 19 and

panel 2° methods convects the shed vortex filaments with the instantaneous local velocity.

This method is suited for unsteady flow problems, whereas the spacial wake-relaxation

method assumes steady-state conditions exists. Still another scheme treats the wake as an

array of two-dimensional point vortices moving in planes perpendicular to the free-stream

velocity 21. Precise analysis of deforming vortex sheets has been attempted recently and it

has been noted that even for a simple two-dimensional vortex sheet problem, the calculation

of the self-induced motion of vortex sheets is extremely difficult 22. Based on these findings,

it should be noted that the calculated shape of the deformed wake, regardless of the method

used, may vary somewhat from reality. If near wake methods are used to calculate the

induced drag, however, then the impact due to any differences between the calculated and

the actual wake shapes will be greatly reduced.

IV. The Development of a Method for the Aerodynamic Design and

Analysis of Planar and Non-Planar Wings

After considering the methods described, it was concluded that none had both the
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speedand accuracyrequired to be effective asa tool for designingwings having minimum

overall drag. Thus, a hybrid method wascreated to take advantageof the best features of

two of the methods. This method combinesthe lift distribution determination and the wake

relaxation methodology of a low-order panel method with the induced drag calculation of

the modified lifting-line method. The method is reasonably fast and retains sufficient

accuracyto be useful for designwork.

Panel Method Solution

The first element of the hybrid method is a low-order panel method which models

the wing with flat panels eachhaving a constant distributed source and doublet strengths.

The wing wake is formed usingvorticity filaments which are shed from a given point on the

trailing edge. The strengthof thesefilaments is taken asthe difference in doublet strengths

of the upper and lower surfacepanelswhich join to form the trailing edge at that point.

The determination of the lift and induced drag distributions about a wing in the

presenceof a free-wakebeginsby prescribing the wake to be in the sameplane asthe free

streamvelocity. The panel method is usedto find the vorticity distribution on the wing and

shed into the wake, as well as the velocities induced around the wing. Using this

information, the trailing vortex filaments are relaxed to align themselveswith the local

velocities that have been determined in the wake. This wake relaxation is an iterative

processand typically convergeswithin about three iterations.

Once a new wake shapehasbeen determined, the induced drag canbe calculated

with a method to be describedshortly. Using the deformed wake shape,the panel method
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is again used to obtain vorticity and induced velocity values that are different from those

obtained with the undeformed wake because the boundary conditions are no longer the

same. With the new vorticity and induced velocities, the wake can be further relaxed toward

a converged shape, and the induced drag recalculated. This procedure is continued until

convergence, based on the change of the induced drag calculation from one iteration to the

next, is achieved. Because the relaxed wake shape is much closer to the physical wake than

one aligned with the free stream, the mutual interaction between the wing and the wake is

more accurately modeled. Consequently, as this interaction influences the relationship

between wing geometry and induced drag, the hybrid free-wake method should be beneficial

in the design of wings having minimum drag.

Induced Drag Calculation

The induced drag is calculated in the hybrid method by application of the Kutta-

Joukowski law,

P : x f3p

at the trailing edge of the wing. The induced drag is the streamwise component of the force

per unit span vector. The velocity vector is that resulting from the free-stream velocity plus

that induced by the trailing vortex filaments. The influence of the bound vorticity, that is,

the velocity induced by the source and doublet distributions on the wing, is excluded in the

determination of the velocity vector. This exclusion is an extension of the assertion by

Munk 5 that the bound vorticity need not be included in the calculation of induced downwash

because the influence from the transverse vortices of any two lifting elements is reciprocal
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and canceling. Although Munk's formulation was developed assuming a fixed wake, the

influence of the bound vorticity is unaffected by what occurs downstream, and therefore this

assertion should be equally valid whether the wake is fixed or free to deform. The shapes

of the trailing vortex filaments needed for the calculation of the downwash velocity are

obtained by placing the filaments along the velocity vectors that are found during the panel

method solution. After the induced drag is calculated, the panel method is again used and,

with the new wake shape, a new value for the induced drag calculated. This process is

continued until convergence, based on the change in the calculated induced drag from one

iteration to the next, is achieved.

It is of interest that the hybrid method originally made use of the panel method to

calculate lift distributions, and the modified lifting-line method to determine the relaxed

wake shape in addition to computing the induced drag. It was found, however, that while

the modified lifting-line method yielded induced drag predictions that were very close to

those of the hybrid method, the wake shapes that corresponded to these calculations were

very different. In retrospect, this is understandable in that, unlike in the case of the hybrid

method, the modified lifting line method ignores any chordwise influences on the near-wake

rolling-up process and, consequently, the converged wake geometries are very different.

Because of this, the wake relaxation in the hybrid scheme is now performed in the panel

method part of the program.

Extrapolation Factor

An important element of the present method is an extrapolation factor which largely
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eliminates the dependence of the computed induced drag on the spanwise number of panels

used in modeling the wing. This factor is a function of the number of spanwise panels and

is calculated by comparing the induced drag computed using the modified lifting-line part

of the hybrid method with a fixed wake to that determined analytically for an elliptically

loaded wing. Specifically, the extrapolation factor is found by applying the Kutta-Joukowski

law at the trailing edge of an elliptically loaded wing using the velocity induced by a flat,

fixed wake modeled with a given number of trailing vortex filaments. The strengths of the

trailing filaments are equal to the spanwise derivative of the bound vorticity. As the span

efficiency for this case is known analytically to be unity, the ratio of this with the span

efficiency computed by the above method can be used as an extrapolation factor for any

results computed using the same number of spanwise increments. As will be shown in the

next section, the extrapolation factor dramatically reduces the number of spanwise wing

panels needed to accurately determine the induced drag and significantly reduces the

computational requirements.

V. Validation Using Computed Results

Because many of the difficulties in predicting induced drag using theoretical methods

also extend to experimental determinations, the validation of the hybrid panel/trailing-edge

method must rely largely on testing its robustness, evaluating its self-consistently, and

comparing results obtained using it to those of other computational methods.

The wings used in the validation exercises, shown in Fig. 1, all have elliptical chord
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distributions and aspect ratios of 7.0. The location of the trailing edge of the wing

geometries is given by

X_

[ %,0,

where )I is the non-dimensional span location, and the tip location (x_,) relative to the root

chord varies from 0.25c_t to 1.50c,_ot. The airfoil section used on all of the wings is the

NACA 0012. Although the hybrid code can analyze models with both twist and dihedral,

neither was included in the validation test runs.

Extrapolation Factor

The extrapolation factor discussed in the previous section is presented as a function

of the number of spanwise increments in Fig. 2. Fig. 3 shows the advantage of using the

extrapolation factor by plotting the calculated value of the span efficiency factor, e, against

the relative tip location for constant chordwise but different spanwise panelling densities.

Without the use of the extrapolation factor, e varies significantly as a function of the

spanwise panelling density as is shown by the uncorrected curves. For spanwise panel

densities of greater than 20, however, e is essentially independent of panelling density when

use is made of the extrapolation factor. This result will be further demonstrated by

comparison to a higher order panel method in the following sections.

As demonstrated in Fig. 4, the value of e is seen to be relatively insensitive to the

number of chordwise panels, provided at least 50 panels (25 upper surface, 25 lower surface)

are used.
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Comparison with the Results of Other Computational Methods

To further test the validity of the hybrid panel/trailing-edge method, results have

been compared to those obtained from it. A brief description of these methods follows.

Pressure Integration

The most direct way to predict induced drag using a panel method is to sum the

streamwise components of the predicted surface pressure forces over all of the wing panels.

Since the mathematical model used does not account for viscous effects, the streamwise

force thus computed is the induced drag. It has been shown that the induced drag

calculated in this way is extremely sensitive to the panel density in both the spanwise and

chordwise directions 2'3. Thus, the major shortcoming of this prediction method is that to

obtain reasonably consistent results, a large number of surface panels must be used and the

required computational time becomes prohibitive, especially for design purposes.

Another problem associated with the use of pressure integration is due to numerical

round-off which results in "leakage" because the source contributions of all the panels do

not sum exactly to zero. Thus, it is found that a small amount of lift, and consequently

induced drag, is predicted when the wings are operated at zero angle of attack. Since the

wings are untwisted and the airfoil symmetric, this is clearly in error and, although small,

must be taken into account. Fig. 5 shows the dependence of this error on the tip location

and the panel density for the low-order panel method used in the present study, and

compares this to a similar error obtained using a higher-order method and presented in Ref.

3. The error in the zero-lift drag prediction appears to depend on the tip location; however,
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increasing the number of spanwise panels causes this dependence to disappear. This

behavior is corroborated by the results of Ref. 3. With 100 chordwise by 10 spanwise

(100xl0) panels, the error with rearward tip location is very similar to that of the hybrid

method. As the panel density is increased to 100x50, however, the error is essentially

independent of the tip location. Thus, for a given number of chordwise panels, increasing

the spanwise panel density causes the zero-lift error to approach that of the tip location at

.25c. Consequently, a correction based on the zero-sweep error for a given chordwise

density can be applied to the pressure integration induced drag calculations. In the test

cases that follow, the pressure integration results are presented both with and without the

inclusion of a correction for the zero-lift error. These two extremes are presented as an

upper and lower bound on the pressure integration results.

Finally, it should be noted that the pressure integration results presented do include

an effect from the deforming wake. This comes about in the computation of the pressure

on the wing surface by including the contribution of velocity induced by the deformed wake.

Trefftz-Plane Method

Following the formulation by Trefftz 23, the induced drag is computed assuming the

wake to be fixed and aligned with the free-stream velocity. The Trefftz method used here

differs from the hybrid panel/trailing-edge method only in that the wake is undeformed.

In the following comparisons, the difference in results between the hybrid method and the

Trefftz method can be taken to be the influence of the freely deforming wake.
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Modified Lifting Line

The last method used for comparison employs the modified lifting-line calculation

of induced drag 7. This method takes the spanwise circulation distribution predicted by the

low-order panel method, computes the corresponding strength of the trailing streamwise

vortex filaments shed into the wake, then relaxes the wake using only the influence of the

trailing wake vortices. The induced drag is then computed by applying the Kutta-Joukowski

law at the wing trailing edge using the velocity induced by the deformed wake and the wing

circulation assumed to be concentrated at the trailing edge. Unlike the hybrid method, the

modified lifting-line method does not include any influence from the bound vorticity on the

wing in calculating the shape of the deformed wake.

Comparison of Results

For an angle of attack of 4 degrees, the span efficiency factor, e, as calculated using

pressure integration, Trefftz-plane method, modified lifting-line method, and the hybrid

panel/trailing-edge method, is presented as a function of tip location in Fig. 6. The methods

all use a panelling density of 50 chordwise, where appropriate, and 20 spanwise (half-span)

panels. By comparing the hybrid method with the Trefftz-plane method, it is observed that

wake roll-up causes a performance penalty, but that this penalty decreases with more aft tip

locations. Finally, it should be noted that for this case, the difference between the corrected

and uncorrected pressure integration calculations would result in a variation of ±.0003 in

the induced drag coefficient calculation. As this variation is much larger than the

differences due to planform shape predicted by any of the other methods, the value of
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pressure integration methods not havingvery large panelling densities is again called into

question. Results similar to the preceding figure, but for an angle of attack of 8 degrees,

are presented in Fig. 7.

The hybrid panel/trailing-edge method and the similar Trefftz-plane method

show the most consistency between the 4 and 8 degree angle of attack cases, as the other

methods show a reversal in their predicted trends. Although it is expected that e will

change slightly with angle of attack, the trend reversals predicted by the other methods do

not seem very likely. The consistency of the hybrid method suggests that it is less prone to

error at higher angles of attack than the other methods, especially pressure integration, and

is therefore more robust. The reduction in induced drag with moving the tip location aft

corresponds to recent experimental results _, and has been predicted by others using various

methods over the past several years 1"3. Clearly, however, because all of the inviscid

predictions ignore the vortex that would form in the region of the highly swept tip, the

benefits indicated with the very far aft tip locations are not likely to be realized.

In Fig. 8, the span efficiency predictions of the present method are compared with

those of the higher-order panel method of Ref. 3. This method uses pressure integration

for the induced drag calculation and requires 100 chordwise and 70 spanwise panels to

approach a consistent result. In contrast, the hybrid panel/trailing-edge method essentially

matches those results with only 50x20 panels. If it is assumed that the computation time of

the panel methods vary with N 2, the hybrid method will run approximately 50 times faster

than the higher-order panel method for the same level of accuracy.
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VI. Validation Using Experimental Results

Description of Test Models

In addition to comparing results to other theoretical methods, validation studies were

undertaken for the hybrid panel/trailing edge method by comparing its predictions against

experimental results. The experimental data used are those obtained from wind-tunnel tests

at the NASA Langley Research Center. The wing geometries used for this comparison are

similar to those used in the computational validation of the previous section. Each wing has

an elliptical chord distribution with varying tip locations. The location of the quarter chord

point at each spanwise station is defined by the position of the wing tip relative to the root

chord and is given by the expression

= c,(X p)(13 c).
c, 4 c,

The wings used in the wind-tunnel tests have tip locations at 0.25 (unswept elliptical), 1.50

(crescent shaped), and 1.00 (straight trailing-edge) relative to the root chord. An NLF(1)-

0416 airfoil section _ is used on each model, and the transition point fixed by trip strips at

7.5% chord. The wings of the wind-tunnel models are untwisted, have a span of 48.0 inches,

a projected area of 384.0 sq.in., and an aspect ratio of 6.0. Each of the wings is mounted

on a common 3.0 inch diameter center body. The influence of the centerbody is not

included in the computational predictions. The geometries of these wings (without the

centerbody) are shown in Fig. 9.
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Prediction Method

The hybrid panel/trailing-edge method was used to predict the inviscid (vortex)

induced drag of the experimental wings. The wings were modeled with 60 chordwise (30

upper, 30 lower) panels and 20 spanwise (half-span) panels. The span efficiency factor was

obtained using the same procedure as described in the previous sections.

The profile drag of the models was built-up using a strip analysis with the section lift

coefficients predicted by the panel method. The section profile drag coefficients of the

NLF(1)-0416 airfoil as a function of chord Reynolds number and section lift coefficient were

obtained using the airfoil design and analysis program of Ref. 26. The effects of flow

separation at the higher lift coefficient are not taken into account.

Presentation and Discussion of Results

The results from the wind-tunnel tests and the predictions of the hybrid

panel/trailing-edge method are presented in Figs. 10-21, and in Table 1. Comparisons

between the experimentally measured and the predicted performance for each wing are

presented in Figs. 10-12. The drag is slightly overpredicted at low lift coefficients in all

cases and underpredicted at high lift coefficients for the crescent-shaped wing. The change

in drag with respect to lift is predicted fairly well up to moderate lift coefficients for all of

the wings. Figs. 13 and 14 can be used to compare the performance of the wings relative

to one another as measured experimentally and as predicted by the hybrid method. The

predicted results agree with the measured data in that the straight trailing-edge wing exhibits

a drag lower than the unswept elliptical wing even to high lift coefficients. As expected,
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however, the prediction method does not capture the significant increase in drag for the

crescent-shaped wing at high lift coefficients because the inviscid method does not account

for the separated flow that occurs over the tips of the highly crescent planform.

The measured and the predicted drag coefficients are presented in Figs. 15-19 as a

function of C_, from which Oswald efficiency factors can be determined. The measured

data in Figs. 15-17 show that the Oswald efficiency for each of the three wings is not

constant over the range of lift coefficients for which they were tested. As expected, due to

flow separation, the measured Oswald efficiency decreases with increasing lift coefficient.

The change is greatest for the crescent-shaped wing. In the case of the unswept elliptical

and straight-trailing-edge wings, the predicted Oswald efficiency matches the measured

efficiency over the C L range from approximately 0.7 to 0.9. For the crescent-shaped wing,

the predicted and measured Oswald efficiencies match for lift coefficients from 0.6 to 0.8.

In all cases, the hybrid method underpredicts the Oswald efficiency at low CL and

overpredicts it at high CL.

In Figs. 18 and 19, it can be seen that the experimental and predicted results agree

in that both show the relative inferiority of the unswept elliptical wing. Based on these data

and the theoretical results of the following sections (see Fig. 25), this result is probably due

to the deviation of the spanwise lift distribution from elliptical. Above a lift coefficient of

0.7, the experiment shows the crescent-shaped wing to be clearly inferior to the straight-

trailing-edge wing. This is likely due to flow separation on the highly swept tips of the

crescent-shaped wing as observed in flow visualization studies during the experiment.
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Obviously this viscous effect is not captured in the inviscid prediction method and, in fact,

the predicted results actually show the straight-trailing-edge wing slightly inferior to the

crescent wing above a lift coefficient of 0.7. This discrepancy results from the error in the

predicted profile drag component which is added to the hybrid method inviscid induced drag

prediction. To illustrate this, the predicted inviscid induced drag coefficient is presented as

a function of C_ in Fig. 20. It can be seen that the crescent-shaped and straight-trailing-

edge wings have nearly identical span efficiencies, with the unswept elliptical wing being

clearly inferior.

As a means of separating the effects of the viscous and the inviscid drag components

at lift coefficients between 0 and 0.7, Fig. 21 presents a comparison between the measured

(total) drag coefficient and the predicted vortex (inviscid) induced drag coefficient both as

functions of CL2. The predicted curves have been offset by a constant amount to aid in

comparing their slopes to those of the measured data. It can be seen in this figure that for

the unswept elliptical wing the measured Oswald efficiency matches the predicted span

efficiency over this entire range of lift coefficients. For the other two wings, the drag due

to lift analysis must be separated into moderate and low lift coefficient ranges. In the

moderate C L range (0.4 to 0.7) the measured drag due to lift of the crescent-shaped wing

becomes dominated by the drag increase due to flow separation at the tips. This is

illustrated in Fig. 21 by the departure of the measured drag from the linear C D vs.C_

relationship above a lift coefficient of 0.5. In the low CL range (0 to 0.4) the measured data
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of the straight-trailing-edge wing has the most pronounced departure from the linear C a vs. C_

relationship. It is believed that this wing takes advantage of the decreasing section profile

drag of the airfoil as lift is increased from CL = 0 to C L = 0.4 without experiencing the

detrimental effects of wake roll-up as experienced by the unswept elliptical wing, or the tip

flow separation experienced by the crescent-shaped wing. The straight-trailing-edge wing

actually attains a measured Oswald efficiency greater than unity in the lift coefficient range

between 0 and 0.7. The measured and predicted Oswald efficiencies over the C L range of

0 to 0.7, and the predicted span efficiency over the entire CL range are presented in

Table 1.

VII. Discussion of Tools for the Design of Planar and Non-Planar

Wings Having Minimum Induced Drag

In order to design wings having minimum induced drag, it is necessary to know the

optimum lift distribution in the presence of the freely deforming wake. Using the lifting-line

model, Munk concluded that for the induced drag of a wing to be a minimum, the induced

downwash at the lifting line must be constant if the wing is planar, or given by the relation

CO1 = G)o COSO

where _o is a constant and 0 the local dihedral angle, if the wing is non-planar s. Although

Munk assumed that the wake was non-deforming, the reasoning leading to the above

conclusion does not depend upon the mechanism which generates the downwash. In
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determining the spanwise lift distribution which generates the optimum downwash

distribution, the assumption of the fixed wake does become important. The classical result

of the optimum elliptic lift distribution follows immediately if this assumption is made. The

question that remains, however, is what lift distribution generates the optimum downwash

distribution for minimum induced drag in the presence of free wake. As no mathematical

solution to this question is as yet available, a first step in addressing it was taken when, in

the course of this research, it was shown that for a straight lifting line with an elliptical lift

distribution the induced drag is independent of wake rollup. Given this result and in lieu

of a complete mathematical proof, it is assumed that the free wake does not significantly

alter Munk ' s result concerning the optimal lift distribution for the minimization of induced

drag. To test this assumption, the induced drag was calculated using the modified lifting-line

method with an optimal lift distribution prescribed according to Munk's result. The

induced drag was then calculated with the lift distribution slightly perturbed from the

prescribed optimum. In all cases considered, the drag increased. Thus, for the present time,

even if the Munk result is not truly optimal, it is considered to be close enough for

engineering purposes.

The effect of the deforming wake on the spanwise lift distribution of three wings with

elliptical chord distributions is shown in Figs. 22-24 which present the error in the spanwise

lift distribution from the optimum. It can be seen that the deforming wake has the largest

effect on the wing with the tip at 0.25 root chord (straight quarter-chord line). As the tip

location is moved aft, the wake deformation has less and less effect on the lift distribution.

This is demonstrated in Fig. 23 for the straight-trailing-edge wing and in Fig. 24 for the
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crescent shaped wing. It is suggested that the aft-located tip isolates the rolled wake from

the rest of the wing and, consequently, decreases its influence. These results are combined

and presented in Fig. 25 where it can be seen that the straight-trailing-edge wing maintains

the closest to optimal lift distribution, particularly near the tip. It is interesting to note, that

even though the lift distribution of the crescent-shaped wing is farther from elliptical than

the straight-trailing-edge wing, the results presented in the previous section predict the

crescent-shaped wing to have slightly higher span efficiency. Some part of this effect is that

the benefit of moving the wake aft more than offsets the penalty of the lift distribution not

being elliptical. A more significant contribution to this effect, however, is that because the

panel method predicts negative lift at the tip, application of the Kutta-Joukowski law here

results in a small amount of "induced thrust," overcoming the deficiency of the non-

optimum lift distribution. This effect is very small and certainly nullified by viscous effects

in the real flow. This conclusion is supported by the previously presented experimental

results.

Preliminary results of using the hybrid panel/trailing-edge method for the design of

a non-planar wing having minimum induced drag is illustrated in Fig. 26. At the top of this

figure, the lift distribution error from optimum is plotted against span for an arbitrary

(starting) wing planform and winglet geometry. In this case, the wing under consideration

has winglets which are 0.1 semi-span in height. Based on the error, the chord was adjusted

appropriately in the locations where it is over or under that needed for the optimum lift

distribution. As shown in the other two graphs, the lift distributions for the second and third

geometry iterations are closer to optimum. While these iterations are presented only to
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demonstrate the potential, it is clear that this processcan be continued until convergence

to the optimum spanlift distribution is achieved. The sameoptimization procedure canbe

applied to any non-planar geometries with different dihedral distributions or winglet

configurations and their overall performance compared. In this way, the hybrid method

provides a valuable tool for the designof a mission specific, optimum non-planar wings.

VIII. Conclusions and Recommendations

The newly developedhybrid panel/trailing-edge method is avaluable tool for taking

the non-linear effects of a freely deforming wake into account in determining the induced

drag of planar and non-planar wing geometries. When compared to other methods, it is

found that it achievesequivalent accuracywith considerablylesscomputational time. Given

its speedand robustness,the hybrid method shouldprove most useful in the designof planar

and non-planar wings having minimum induced drag.

Using the hybrid panel/trailing-edge method, the influence of planform geometry on

the induced drag of planar wingshasbeenexplored. It is found that the benefit of crescent-

shapedplanforms for reducing induced drag that hasbeen noted by others is confirmed;

however, this benefit is not nearly asgreatashassometimesbeensuggested.For the family

of wings considered,the reduction in induced drag that is possible for a wing operating at

a lift coefficient of 1.0 and having a straight trailing edge,as compared to one having no

sweep,is approximately 1%. For any further aft tip geometries,the additional reduction in

induced drag is not significant and certainly not enough to offset the unaccounted for

penalties due to viscouseffects that would accompanythe more crescentplanforms.
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In exploring the effect of the freely deforming wake on the wing lift distribution, it

is found that the free wake hasa significant influence on the lift distribution of the unswept

elliptical wing, but that this effect is diminished when the tip is moved aft. Once the tip is

located such that the wing hasa straight trailing edge, any further aft movement seemsto

have little effect on the lift distribution and, consequently,on the span efficiency.

While it seemsthat the impact of planform shapeon reducing the induced drag of

planar wings is limited, significant gains appear to be possible using non-planar wing

configurations. While well-suited non-planar wing designmethodshave not been available,

the speedand accuracyof the hybrid method make it ideal for this problem. Basedon the

few non-planar casesexaminedthus far, the method appearsto handle thesecasesaswell

as it does planar ones. By combining the hybrid method for analyzing induced drag with

methods that predict profile drag, wing geometrieswhich have minimum overall drag can

be designed.

At this point, it is recommendedthat the methods developed be used to design a

wind-tunnel experiment to comparemissionspecificplanar and non-planar wings. As there

is no common basis of comparison otherwise, by designing an optimum planar and an

optimum non-planar wing to the samemission requirements it is possible to determine if

the gains promised by non-planar geometries are realizable. In addition, as quality

experimental data for non-planar wings is non-existent, the results of such an experiment

would be invaluable for the development and calibration of any non-planar wing analysis

methods.

Finally, if the results of the recommended experiment support the promise that

aerodynamic gains are possible using non-planar wing geometries, then it remains to develop
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amethod that includes the effectsof compressibilityand allowsa designerto trade-off these

gains againstother factors suchasweight, wing-root bending moment, and so forth.
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Figure 1: Wing Geometries Used for the Computational Validation of the Hybrid PaneL/Trailing-Edge
Method from Unswept Elliptical Wing (top) to Full OmscentoShaped Wing (bottom).
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Figure 9: Wing Geometries Used for the Experimental Validation of the Hybrid Panel/Trailing-Edge Method;
Unswept Elliptical (top), Crescent-Shaped (center), and Straight Trailing-Edge (bottom)
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Figure 15: Comparison of the Measured and Predicted Oswald's Efficiencies for the Unswept Elliptical Wing
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Figure 16: Comparison of the Measured and Predicted Oswald's Efficiencies for the Crescent Shaped Wing
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Figure 17: Comparison of the Measured and Predicted Oswald's Efficiencies for the Straight Trailing Edge Wing
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Figure 18: Comparison of the Measured Oswald's Efficiencies of the NASA LaRC Test Wings
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Figure 19: Comparison of the Predicted Oswald's Efficiencies of the NASA LaRC Test Wings
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Figure 26: Non-Planar Wing Design Geometry Iterations


